Citrazinic Acid Synthesis Essay

Herein, we have implemented an intimate grinding–mixing protocol (GMP) for the synthesis of a new hydrogelator from citrazinic acid and melamine. Sonication, just for a few seconds, of the ground mixture in a suitable solvent/mixed-solvent system finally results in the formation of a gel matrix. Citrazinic acid is decorated with ureidopyrimidone functionalities and melamine is enriched with aminopyridine functionalities. Therefore, the necessary non-covalent interactions (like hydrogen bonding and π–π stacking) become part-and-parcel of this reaction, bringing a nanofibrous gel material into existence. A thorough and complete solvent-dependent gelation investigation suggests that water must be present as the sole solvent or one of the members of other mixed-solvent systems to successfully result in gel formation. The gel shows an entangled network morphology. Different micro-analytical studies (FTIR, powder XRD, FESEM, TEM, rheology, etc.) have been conducted for complete characterization of the gel sample. The gel also exhibits stimuli-responsive behaviour towards different interfering chemical parameters like pH, selective anions, etc. Again, it is worth mentioning that here, GMP plays a key role in strongly initiating and improvising solid-state self-assembly. Different non-covalent interactions afford a suitable hydrogen-bonded motif which presumably propagates upon activation in solution phase after mild sonication, favouring the spontaneous formation of fibrous architectures. It is also noticed that without grinding, the solid-state interactions are jeopardized and only a partial gel structure prevails. Finally, the available porosity in the gel framework and the enriched π-electron density within the structure make the gel a suitable host for adsorption of guest molecules. This information provoked us to study the reversible adsorption–desorption equilibrium of molecular iodine within the dried-gel matrix. The guest iodine entrapment into the host occurs both from the solution and also from gas-phase iodine. The complete analysis suggests that our material presents a high storage capacity for this halogen species. Therefore, the study prescribes that the synthesized hydrogel material could be a suitable candidate for application in synthetic organic chemistry and would find an avenue to solve other environmental issues also.

1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat Methods. 2008;5:763–775. doi: 10.1038/nmeth.1248.[PubMed][Cross Ref]

2. Kairdolf B A, Smith A M, Stokes T H, Wang M D, Young A N, Nie S. Annu Rev Anal Chem. 2013;6:143–162. doi: 10.1146/annurev-anchem-060908-155136.[PMC free article][PubMed][Cross Ref]

3. Petryayeva E, Algar W R, Medintz I L. Appl Spectrosc. 2013;67:215–252. doi: 10.1366/12-06948.[PubMed][Cross Ref]

4. Wang J, Choi H S, Wáng Y-X J. J Thorac Dis. 2015;7:E201–E205. doi: 10.3978/j.issn.2072-1439.2015.06.13.[PMC free article][PubMed][Cross Ref]

5. Li H, Kang Z, Liu Y, Lee S-T. J Mater Chem. 2012;22:24230–24253. doi: 10.1039/c2jm34690g.[Cross Ref]

6. Lim S Y, Shen W, Gao Z. Chem Soc Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E.[PubMed][Cross Ref]

7. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Nanoscale. 2015;7:1586–1595. doi: 10.1039/C4NR05712K.[PubMed][Cross Ref]

8. Wang Y, Hu A. J Mater Chem C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F.[Cross Ref]

9. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew Chem, Int Ed. 2013;52:3953–3957. doi: 10.1002/anie.201300519.[PubMed][Cross Ref]

10. Zhang J, Yu S-H. Mater Today. 2016;19:382–393. doi: 10.1016/j.mattod.2015.11.008.[Cross Ref]

11. Song Y, Zhu S, Yang B. RSC Adv. 2014;4:27184–27200. doi: 10.1039/c3ra47994c.[Cross Ref]

12. Ding C, Zhu A, Tian Y. Acc Chem Res. 2013;47:20–30. doi: 10.1021/ar400023s.[PubMed][Cross Ref]

13. Sun X, Liu Z, Welsher K, Robinson J T, Goodwin A, Zaric S, Dai H. Nano Res. 2008;1:203–212. doi: 10.1007/s12274-008-8021-8.[PMC free article][PubMed][Cross Ref]

14. Yang S-T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Q G, Sun Y-P. J Am Chem Soc. 2009;131:11308–11309. doi: 10.1021/ja904843x.[PMC free article][PubMed][Cross Ref]

15. Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G. Adv Mater. 2013;25:6569–6574. doi: 10.1002/adma.201303124.[PubMed][Cross Ref]

16. Cao L, Wang X, Meziani M J, Lu F, Wang H, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, et al. J Am Chem Soc. 2007;129:11318–11319. doi: 10.1021/ja073527l.[PMC free article][PubMed][Cross Ref]

17. Kong B, Zhu A, Ding C, Zhao X, Li B, Tian Y. Adv Mater. 2012;24:5844–5848. doi: 10.1002/adma.201202599.[PubMed][Cross Ref]

18. Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J Am Chem Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h.[PubMed][Cross Ref]

19. Dekaliuk M O, Viagin O, Malyukin Y V, Demchenko A P. Phys Chem Chem Phys. 2014;16:16075–16084. doi: 10.1039/C4CP00138A.[PubMed][Cross Ref]

20. Wang S, Chen Z-G, Cole I, Li Q. Carbon. 2015;82:304–313. doi: 10.1016/j.carbon.2014.10.075.[Cross Ref]

21. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Haddad R E, Fan H, Sun Z. Sci Rep. 2014;4:5294. doi: 10.1038/srep05294.[PMC free article][PubMed][Cross Ref]

22. Guo Y, Wang Z, Shao H, Jiang X. Carbon. 2013;52:583–589. doi: 10.1016/j.carbon.2012.10.028.[Cross Ref]

23. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, Zhang Y. Nanoscale. 2014;6:1890–1895. doi: 10.1039/C3NR05380F.[PubMed][Cross Ref]

24. Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P. Small. 2008;4:455–458. doi: 10.1002/smll.200700578.[PubMed][Cross Ref]

25. Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis E P. Chem Mater. 2008;20:4539–4541. doi: 10.1021/cm800506r.[Cross Ref]

26. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z. Nanoscale. 2013;5:12272–12277. doi: 10.1039/c3nr04402e.[PubMed][Cross Ref]

27. Qu S, Liu X, Guo X, Chu M, Zhang L, Shen D. Adv Funct Mater. 2014;24:2689–2695. doi: 10.1002/adfm.201303352.[Cross Ref]

28. Qu S, Wang X, Lu Q, Liu X, Wang L. Angew Chem. 2012;124:12381–12384. doi: 10.1002/ange.201206791.[Cross Ref]

29. Hou Y, Lu Q, Deng J, Li H, Zhang Y. Anal Chim Acta. 2015;866:69–74. doi: 10.1016/j.aca.2015.01.039.[PubMed][Cross Ref]

30. Cao X, Ma J, Lin Y, Yao B, Li F, Weng W, Lin X. Spectrochim Acta, Part A: Mol Biomol Spectrosc. 2015;151:875–880. doi: 10.1016/j.saa.2015.07.034.[PubMed][Cross Ref]

31. De Geest B G, Vandenbroucke R E, Guenther A M, Sukhorukov G B, Hennink W E, Sanders N N, Demeester J, De Smedt S C. Adv Mater. 2006;18:1005–1009. doi: 10.1002/adma.200502128.[Cross Ref]

32. De Geest B G, De Koker S, Sukhorukov G B, Kreft O, Parak W J, Skirtach A G, Demeester J, De Smedt S C, Hennink W E. Soft Matter. 2009;5:282–291. doi: 10.1039/B808262F.[Cross Ref]

33. Park M-K, Xia C, Advincula R C, Schütz P, Caruso F. Langmuir. 2001;17:7670–7674. doi: 10.1021/la011006k.[Cross Ref]

34. Shchukin D G, Sukhorukov G B, Möhwald H. J Phys Chem B. 2004;108:19109–19113. doi: 10.1021/jp048052o.[Cross Ref]

35. Gaponik N, Radtchenko I L, Sukhorukov G B, Rogach A L. Langmuir. 2004;20:1449–1452. doi: 10.1021/la035914o.[PubMed][Cross Ref]

36. Gaponik N, Radtchenko I L, Gerstenberger M R, Fedutik Y A, Sukhorukov G B, Rogach A L. Nano Lett. 2003;3:369–372. doi: 10.1021/nl0259333.[Cross Ref]

37. Paleckiene R, Sviklas A, Slinksiene R. Russ J Appl Chem. 2005;78:1651–1655. doi: 10.1007/s11167-005-0579-2.[Cross Ref]

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *